CS 480, Senior Project Proposal

Thomas J. Flora

12/11/2006

Project Introduction and Goals

The primary goal of this project is to develop a web crawler that intelligently visits a queue of web pages and stores them in a database to be accessed by a search engine. The crawler should at least be reasonably fast, “bandwidth fair,” methodical, and have some form of update and addition policy applied to an underlying database. The search engine will act on the database to provide users with basic search functionality, but relevancy of the search criteria to the results is of most importance. Development of a meaningful metric to measure relevancy (returned with the search) and ranking is another important goal.
Project Details

At this time I expect the crawler’s general architecture to be in the form of a java application that continuously downloads pages into a database from a queue, updating the queue as it runs based on its scheduling logic. Initially the queue will consist of a short(ish) list of URLs, but will grow to some maximum as pages are visited. The stored pages will consist of the source (all words and tags), the address of the actual site, a date/time field of caching, how long it took to download that page, and so on. The search engine should be able to access the local storage, scan the contents of the indexed websites for the search criteria and generate a web page(s) containing links to the actual page and a snippet of information where the search criteria first occurs for each hit. The search engine should be accessible from a Firefox, IE, etc. The database system I will use will be MySQL on Euclid, and the web crawler code itself will run there as well.
Grading Contract

	Feature
	Points

	Web crawler can index a queue of web pages (insert into mysql database) DONE
	20

	Web crawler can update that queue according to scheduling logic DONE
	5

	Web crawler is multithreaded DONE
	5

	Web crawler uses an adaptive “fairness” policy. If it took t seconds to retrieve a page, the next request to that server will take place in x*t seconds, as implemented in the MercatorWeb crawler (do per document) DONE
	5

	Web crawler won’t index documents twice if hosted on the same server with different addresses.
	5

	Web crawler schedules revisits as some function of page update frequency 
	4

	Web crawler identifies itself to the web server DONE
	4

	Web crawler can determine if its local copy is outdated or not (reads the appropriate metadata before downloading) DONE
	4

	Web crawler can normalize URLs, including dot-segments (/../tur/./this.html) DONE
	3

	Web crawler restricts requests to HTML & Text documents (Accept header, etc) DONE
	2

	Web crawler can find isolated resources (pages to which there is no internal link) NOT DOING
	2

	Web crawler visits only those pages in the .edu domain DONE
	2

	Web crawler obeys robots.txt DONE
	2

	Web crawler uses the java.util.regex API for HTML parsing DONE
	2

	Web crawler logs its activity. DONE
	2

	Web crawler obeys the robots meta tag DONE
	1

	Web crawler stores date/time of indexing for each page DONE
	1

	Web crawler runs relatively slowly (doesn’t work as fast as it could as to avoid accidentally overloading anyone’s server) DONE
	1

	Web crawler has a simple command-line interface DONE
	1

	Search engine finds pages with matching criteria in storage DONE
	20

	Search engine parses and uses logical AND,OR,NOT
	10

	Search engine can order results by some “relevancy” criteria ~DONE
	5

	Search engine has a browser-accessible interface DONE
	3

	Search engine displays a snippet of data with hit results DONE
	3

	Search engine displays date and time of last visit to this page by crawler DONE
	3

	
	

	TOTAL
	115


	A
	B
	C
	D
	F

	103
	92
	80
	70
	<70


