Online Bible concordance

In this project I made a Bible concordance which is available online. It has many different features for searching the King James Version of the Bible. It has the basic ability of a concordance, which is to search the text for certain words. This online concordance also has the ability to search for phrases. It will search for these words or phrases and will tell the user the number of times they occurred in the Bible. The user will also see how many times each word occurred within each book of the Bible. Then the user will be able to click on any of the books before him and it will show each verse in the book that contained the word. Not only can they search for words and phrases but they can search for words or phrases that are contained within a certain verse. They have the option of searching for verses that contain a word AND another word, or search a verse for a word OR another word or a search for a verse that contains a word BUT NOT another word. This program has the ability to lookup a specific verse such as John 3:16 or to display an entire book of the Bible. There is the option of limiting your search to certain books of the Bible or one book through another book.

This program was built with the programming languages of Perl, CGI and HTML. I chose to use each one of these languages, because I had never used them before. I had heard that these languages were very useful and I really wanted to learn them. I figured that this was a good way to learn them. I found that the language of Perl is very nice and suited this type of project well. One of the biggest advantages I found in using Perl is the expanse of regular expressions that you can build; I will go into detail about regular expressions later on. This language provided many features of being able to search text, manipulate strings, develop hashes, develop arrays and work with the web. The way that Perl is linked to the web is with CGI or common gateway interface. This allows for the passing of information from web pages built in html, to your Perl program. This becomes very useful because you can then just build your web page form and pass whatever data you need. Another advantage of using the language of Perl was the vast array of extensive references found on the web, making it easier to learn and search questions that you may have. Not only that but many people have developed certain useful functions that can be added to your Perl code, these functions are called modules. One module that I used in this project was the TIE::FILE module. This module gave me the ability to access each line of a file just like accessing an array. So I could just say “print MyFile[1310];” and it would print line 1310 of the file that I tied to. Also when you tie to a file it will not actually make an array which would take up memory, but it will still allow you to access it like one.

When I started this project, the first thing that I had to do was to find the text of the Bible, because it would have taken me a long time to type it in. As I looked I found the text of the King James Version in a very convenient format. It had each verse of the Bible on a separate line of a file. Just like this:

Ge1:10 And God called the dry land Earth; and the gathering together…
Ge1:11 And God said, Let the earth bring forth grass, the herb…
Ge1:12 And the earth brought forth grass, and herb yielding seed…
I figured that this would be very useful, so I downloaded this text. Now that I had the text the next task was to develop a searching algorithm of the text. This is where Perl regular expressions came into play. A regular expression is used specifically to search text and find a word within it. Not only that but you can build an expression to find just the word or the find a word within another word, such as if you were searching for 'the', it could find the instances such as “then or the,”. You build these expressions with certain tags. Lets say you wanted to find a the word ‘and’, but you did not want to find instances such as brand. To search for this you would build a regular expression like this;
$line =~ m/\Wand\W/i

This would search the string line and return true if ‘and’ is found. The \W tag is a tag that specifies that one should search for the word, ‘and’, without any ‘word characters(\W)’ next to it. Notice that the \W(word character) tag is on both sides, that is because you do not want any ‘word characters(\W)’ in front of ‘and’ or behind it. The word that is searched for with this expression is contained within the / /. The ‘m’ in front specifies that you should match this word and the ‘i’ that is afterward is to specify the search case insensitive. There are many tags that you can use in your regular expression, such as \d which specifies any digit character and many others. These are just the basics of regular expressions and an overview so you can understand the expression I used to search the text. There are many more details on regular expressions, so many in fact that ‘O’Reilly’ has a book devoted to Perl regular expressions. This is the regular expression that I developed to search the text:

$line =~ m/^$word\W|\W$word\W/ig;

This expression searches to match the $word specified at the beginning of line(^) with no ‘word character(\W)’ next to it, or(|) search for the specified $word with no ‘word characters (\W)’ in front of it or behind it. Then make the search case insensitive(i) and if you find an instance of the word record the position of it and continue to search down the line(g).

With this regular expression I run loop through each line of the file and search for the word. This process seems like it would be slow but it is not, this process is actually quite fast. And as this program runs through each line it just records the number of times the word occurs. In a normal concordance they would have to limit a person from searching words like ‘the’, but this concordance can search and find all 63,919 instances of ‘the’ in a matter of seconds.

At first I designed this program to record into parallel arrays the positions of each word, and the line that contained it. This seemed fine until I needed to pass this information after the initial search. The only way that I found to do that was to either pass all the info in a URL or to write and retrieve it from a file. The idea of passing it through a URL seemed like the best way around this problem. So to do this I took the information in the arrays and made it all into one URL, with each piece of information separated by a ‘:’, then I passed this URL to my next program. This worked fine for smaller amounts of data, but when it got to larger searches I had problems. I was actually able to exceed the URL length allowed, which was quite long. From the way my program was crashing I figure that about the max URL length is somewhere around 7000 characters long. So I was stuck again. The URL idea was out and I really did not want to write to a file, because it would be costly and I could run into problems with many people using this program at the same time. Then I came up with a scheme that was all around better. It would be faster and more effective. I decided that the initial search needed to do nothing more than count the number of hits within each book. Then when the user clicked on which book he wanted to look in, it would search the book again to find the verses, words and display them. To be able to search individual books, I developed a hash so that the name of each would reference the beginning and end line position of the book within the text file. Then I wanted to make it so I could just search those lines within the file. That problem was solved with the TIE::FILE module. Like I said before, this module allows me to access lines of a file like it was an array. So I made a for loop to search from the beginning line to the end line in the file.
($a,$b) = split ':', $filePos{$book};

for $i ($a..$b)
The first line here grabs the file positions of the book that is being searched, from the hash filePos. In this hash the beginning and end file positions are separated by a colon and the split operator is used to separate these. The beginning position is put into ‘a’ and the end position is put into ‘b’. Then these are put into this unusual for loop, which is allowed in Perl. The hash of the file positions looks like this:
%filePos = ("Ge" => "0:1532", "Exo" => "1533:2745",…

In the later stages of developing this program I came upon a big problem that I had overlooked. As I was testing my program searching different phrases I found that I was not able to find a certain phrase that I knew was there. I found out that I had overlooked the problem of commas, semicolons and periods that separated phrases. Once again regular expressions saved the day. To solve this problem I found out how to make a regular expression that could not only find words in a string, but also replace them. So then I took each line of the text file and made a new file with a simple Perl script. This script would read in each line and find each semicolon, colon, period and comma. Once it found these it would take them out of the string and replace them with nothing. Then I piped the output to another file creating the same text without commas, semicolons etc. The regular expression to replace these things was this:

$line =~ s/'//ig;

$line =~ s/,//ig;

$line =~ s/://ig;

$line =~ s/;//ig;

$line =~ s/[.]//ig;

The ‘s’ tag in this regular expression is to search and replace. Between the first set of // you must specify what to find and between the next set of // specify what you want to replace it with. The ‘g’ makes it search for multiple hits within the line and the ‘i’ makes the search case insensitive. I used this same sort of expression to bold the word or phrase that the user is searching for:

$BoldWord = " ".$word." ";

$final =~ s/\W$word\W/$BoldWord/ig;

To bold the word I use this regular expression to replace the word or phrase with the same word with HTML bold tags.

I worked through many different problems and ways to go about this program, but now the overall structure of my program is this. To start there is the HTML form that the user can enter what to search for. When they click go or search, it sends the word or phrase that they were searching to a program called search.cgi. Search.cgi searches the text for the word or phrase and displays a webpage that tells the number of hits in each book and the number of hits overall. Each book and the number of hits is a hyperlink, so the user can click on whichever book they want to look in. When they click on an individual book, the name of the book is sent to the program verse.cgi, and in the background the word or phrase that they were searching for is also sent. Verse.cgi will then search only the lines within the book chosen. Once it finds them it will display each verse that contained the word as a hyperlink with the word that is being searched for in bold. Next if the user clicks on the hyperlink of the verse it will expand to show the context of the verse. To do the hyperlink will pass the information of what line the verse is in the file, to the program showtext.cgi which will then display the 5 verses before that verse and 5 verses after that verse.

On the webpage there is also the option of searching for the specific verse such as John 3:16. To do this, when the user has entered the verse and book they choose and click find. It will pass the information of which book to search for and what verse to the program bookverse.cgi. This program will then take and only search the lines of that book for the ‘3:16’ or whatever they have entered. Once it is found it will be displayed to a webpage. If the user does not enter any verse the entire book that he chose will be displayed to the screen.
In this project I learned so much. First of all I learned Perl, CGI and HTML; I had not used these languages before. I found that Perl is a great language and very useful for web applications, especially its use of CGI. I discovered many of the problems that come with searching for words and phrases within text and how to overcome them. I have a better understanding of how web pages function and the limits of HTML. HTML forced me to split my application into many different programs that had to be called by hyperlinks. I was also limited because I could not transfer any sort of data structures, such as arrays or hashes. I learned to work around these limitations. I discovered many of the features of the Perl language, such as modules, CGI and regular expressions. I had a lot of fun doing this project. I was very pleased to learn that from the different things that I was taught, that I was able to adapt quickly and easily to these different languages and develop an extensive program from them.
